• Modularity of the UPS helps to maintain energy efficiency — The Symmetra MW UPS is like a blade server in the sense that power capacity can be reduced or increased by adding or removing modules. The UPS frames at Sun’s Santa Clara facility are capable of growing in 200 kW increments up to 800 kW. This modularity allows Sun to operate the UPS at its most efficient power levels. By using this type of UPS, if demand grows faster in one building and slower in another, Sun can transfer power modules from one UPS to another. This allows Sun to have the flexibility of always right-sizing the UPS.

• Fast modular repairs — Fast repairs are possible due to the modular design. Should a failure occur, the failed module is replaced. Fewer parts are required and many are fast to replace, making maintenance simple.

• Redundancy for reliability — Important UPS subsystems are redundant with the UPS frame to enhance UPS availability. For example, if there is one more 200 kW module than is required to power the load, the UPS is redundant within the frame. In this scenario, all of the installed bays of power modules share the load. However, if any one bay of power modules fails, the remaining power modules continue to deliver UPS power to the loads. The operations management center is notified through alerts to schedule the failed module to be replaced. The result is more control over the availability of Sun’s operations.

• Real-time monitoring — Many data points within the UPS and its subsystems are IP monitored. This helps ensure that operations staff are continuously aware of the operating parameters of the UPS either remotely or when standing beside the UPS control panel.

Best practices
• Standardize on modularity of the systems — Modular design, from the rack to the utility yard, enables efficient scalability and predictability.

• Use track busway for simplicity and flexibility — The ability to quickly change electrical components is critical to datacenter flexibility.

• Closely monitor power usage — Newer systems have higher densities per rack footprint, requiring closer monitoring down to the rack level to enable predictive power system conditions.

• Provide locations for future growth — Today, average datacenter rack loads are approaching 6 kW, but in a few years these loads are likely to increase to an average of almost 10 kW. As datacenter loads increase, it is imperative to have pre-planned locations for future electrical equipment. When locations for future switch gear, transformers, distribution panels, and more are anticipated and planned for during the datacenter engineering and design phase, it is much easier to significantly grow capacity.

• Plan for capacity growth — A good electrical design allows for capacity increases while reducing the impact to the datacenter. Planning the location of future equipment and electrical pathways in advance is essential, for example, installing the electrical conduits for future electrical infrastructure equipment. The cost of running additional conduits at the time of construction adds very little to the overall project costs, especially when compared to the cost of running the conduit through finished spaces later in time. Electricians must run conduit anyway, so running a few extra is fairly trivial. Planning ahead saves time, money, and datacenter disruption when it is necessary to expand.

Energy-efficient adaptability and scalability
Sun’s new modular pod design provides the foundation for implementing flexible, adaptable, scalable, and efficient electrical systems for the company’s datacenters and lab spaces. With the Starline Track Busway and Symmetra MW systems, Sun now has the ability to expand and grow the entire electrical system with minimal cost and impact to the datacenter. In addition, real-time power data enables Sun to grow datacenter capacity intelligently and as efficiently as possible, supporting the increasing needs of customers, without drawing more power from utilities or incurring additional cost.

• Sun’s “pod” design enables modular and scalable electrical systems. Right-sizing from day one and into the future provides crucial flexibility and cost savings.

• Simplifying the system reduces human error when expanding or reconfiguring the datacenter. Monitoring exact power usage in real time — from the utility feed down to the power strips internal to the racks — enables intelligent forecasting and planning.

• Universal Electric’s Starline Track Busway installs faster than traditional electrical systems and uses power outlets that can be changed quickly to support evolving IT requirements.

• APC’s Symmetra MW UPS provides essential energy efficiency on day one and scales easily to accommodate future growth.

Summary
• Sun’s “pod” design enables modular and scalable electrical systems. Right-sizing from day one and into the future provides crucial flexibility and cost savings.

• APC’s Symmetra MW UPS provides essential energy efficiency on day one and scales easily to accommodate future growth.

• Redundancy for reliability — Important UPS subsystems are redundant with the UPS frame to enhance UPS availability. For example, if there is one more 200 kW module than is required to power the load, the UPS is redundant within the frame. In this scenario, all of the installed bays of power modules share the load. However, if any one bay of power modules fails, the remaining power modules continue to deliver UPS power to the loads. The operations management center is notified through alerts to schedule the failed module to be replaced. The result is more control over the availability of Sun’s operations.

• Fast modular repairs — Fast repairs are possible due to the modular design. Should a failure occur, the failed module is replaced. Fewer parts are required and many are fast to replace, making maintenance simple.

• Redundancy for reliability — Important UPS subsystems are redundant with the UPS frame to enhance UPS availability. For example, if there is one more 200 kW module than is required to power the load, the UPS is redundant within the frame. In this scenario, all of the installed bays of power modules share the load. However, if any one bay of power modules fails, the remaining power modules continue to deliver UPS power to the loads. The operations management center is notified through alerts to schedule the failed module to be replaced. The result is more control over the availability of Sun’s operations.

• Real-time monitoring — Many data points within the UPS and its subsystems are IP monitored. This helps ensure that operations staff are continuously aware of the operating parameters of the UPS either remotely or when standing beside the UPS control panel.

Best practices
• Standardize on modularity of the systems — Modular design, from the rack to the utility yard, enables efficient scalability and predictability.

• Use track busway for simplicity and flexibility — The ability to quickly change electrical components is critical to datacenter flexibility.

• Closely monitor power usage — Newer systems have higher densities per rack footprint, requiring closer monitoring down to the rack level to enable predictive power system conditions.

• Provide locations for future growth — Today, average datacenter rack loads are approaching 6 kW, but in a few years these loads are likely to increase to an average of almost 10 kW. As datacenter loads increase, it is imperative to have pre-planned locations for future electrical equipment. When locations for future switch gear, transformers, distribution panels, and more are anticipated and planned for during the datacenter engineering and design phase, it is much easier to significantly grow capacity.

• Plan for capacity growth — A good electrical design allows for capacity increases while reducing the impact to the datacenter. Planning the location of future equipment and electrical pathways in advance is essential, for example, installing the electrical conduits for future electrical infrastructure equipment. The cost of running additional conduits at the time of construction adds very little to the overall project costs, especially when compared to the cost of running the conduit through finished spaces later in time. Electricians must run conduit anyway, so running a few extra is fairly trivial. Planning ahead saves time, money, and datacenter disruption when it is necessary to expand.

Energy-efficient adaptability and scalability
Sun’s new modular pod design provides the foundation for implementing flexible, adaptable, scalable, and efficient electrical systems for the company’s datacenters and lab spaces. With the Starline Track Busway and Symmetra MW systems, Sun now has the ability to expand and grow the entire electrical system with minimal cost and impact to the datacenter. In addition, real-time power data enables Sun to grow datacenter capacity intelligently and as efficiently as possible, supporting the increasing needs of customers, without drawing more power from utilities or incurring additional cost.

• Sun’s “pod” design enables modular and scalable electrical systems. Right-sizing from day one and into the future provides crucial flexibility and cost savings.

• Simplifying the system reduces human error when expanding or reconfiguring the datacenter. Monitoring exact power usage in real time — from the utility feed down to the power strips internal to the racks — enables intelligent forecasting and planning.

• Universal Electric’s Starline Track Busway installs faster than traditional electrical systems and uses power outlets that can be changed quickly to support evolving IT requirements.

• APC’s Symmetra MW UPS provides essential energy efficiency on day one and scales easily to accommodate future growth.

Summary
• Sun’s “pod” design enables modular and scalable electrical systems. Right-sizing from day one and into the future provides crucial flexibility and cost savings.

• Simplifying the system reduces human error when expanding or reconfiguring the datacenter. Monitoring exact power usage in real time — from the utility feed down to the power strips internal to the racks — enables intelligent forecasting and planning.

Unfortunately, traditional datacenter power implementations — with dedicated hardwired conductors for each power outlet through overhead or raised floors back to main distribution panels and circuit breakers — are neither flexible nor adaptable, and are expensive and time consuming to change. With traditional electrical systems, datacenter architects must preplan every outlet, even though it is nearly impossible to predetermine the power requirements for each rack in each location when the datacenter goes live, let alone for future requirements. When inevitable changes occur as a result of growth and/or equipment upgrades, the costs for electrical changes can be significant — both in terms of manpower and the risk of outages.
Consolidating and standardizing datacenters

To reduce its costs and impact on the environment, Sun is consolidating real estate, and in the process, datacenters. One of Sun’s biggest and most expensive assets is its global technical infrastructure, which is the foundation for the engineering, services, sales, and support community at Sun. Sun’s labs and datacenters are where the innovation happens, products are developed, testing is conducted, and customers are supported. It is critical that this environment enable the Sun community to continue to deliver the innovation that makes Sun thrive. Until recently, however, each space developed on its own, sometimes in converted offices or conference rooms, without design standards.

To eliminate inefficiency and reduce environmental and economic costs, an internal team was established and asked to develop datacenter design standards. Sun’s philosophy for datacenters and lab spaces is to design everything to be as power efficient as possible while simplifying inevitable changes. Simplifying the system also helps reduce human error, which can contribute for up to 90 percent of power interruptions. Everything is designed around the current and anticipated future requirements of a datacenter rack. These requirements are then applied to a “pod,” a self-contained group of racks and/or benches that optimize power, cooling, and cabling efficiencies. The pod acts as a building block of the datacenter and helps Sun standardize power, cooling, and cabling needs for both the datacenter and the utility yard supporting the datacenter.

Given the state of technology today, the current design assumes a starting requirement of 4 kW per rack, upgradeable in 4 kW chunks to as high as 30 kW per rack. With these specifications in mind, Sun designed a flexible, adaptable, and scalable electrical system — with their partners Universal Electric and APC — that is now an accepted standard for Sun’s datacenter design.

Flexible, adaptable power solutions in the datacenter

Starline Track Busway

After extensive investigation and analysis of industry solutions, Sun selected Universal Electric’s Starline Track Busway as the best fit to replace the traditional hardwired electrical system. Sun uses a combination of 250- and 400-amp busways to distribute power from the main electrical rooms to the server racks. The busway system design allows for simple installation, change, and removal of power outlets. It is staff or facilities personnel can add and remove plug-in outlets and electrical equipment at any point along the busway without shutting down the main busway system. This means any location in the datacenter can have the power supply reconfigured without affecting anything else in the space — and without risking an unplanned outage.

Starline Track Busway is the simple, versatile, fast, and economical solution for supplying power to electrical loads. The busway can be tapped at any location with a variety of plug-in units, eliminating panel boards, long runs of conduit and wire, and expensive installation costs for dedicated power outlets. It also dramatically decreases human error. With dedicated circuit breakers located at the rack, troubleshooting or reconfiguring supplies is very easy.

In the Sun datacenter design, two busways are required per pod. Only five conductors per busway run through each conductor back to the panel, rather than three to four wires per outlet. This reduces the amount of copper by up to 15 percent and dramatically cuts installation times. With copper becoming increasingly expensive and in demand from developing countries, the savings in the future could be substantial.

The busways are powered by large distribution boards located in external electrical rooms outside the space. The distribution panels can support multiple buses and reduce the amount of distribution panels located on walls and datacenter spaces.

Benefits of Starline Track Busway

With Starline Track Busway, Sun now has the ability to quickly adapt to changing power requirements in datacenters and labs. The benefits of the system are evident the first time something changes. For example, the day one requirements for Sun’s Santa Clara, California, datacenter were different from the original plan. These changes forced electrical outlet locations and types to be reconfigured, which in a traditional datacenter would have incurred more time and cost or result in IT equipment layouts that were less than ideal. However, with the Starline Track Busway system, Sun was able to quickly and easily adapt to the changes in layout — without any substantial time or cost to the project. And, if the day one requirements are less then initially anticipated, busway components can be easily relocated to another location in the datacenter or to another datacenter rather than abandoning them in place. The ability to right-size from the beginning provides flexibility and economy that is unheard of in today’s datacenters.

Other benefits include:

• Easy, fast, and inexpensive to change — With the Starline Track Busway system, there is no need schedule datacenter power outages to reconfigure outlets, work on live panels, or shut down panels to add, move, or change outlets. With traditional wire-mold deployments, it is often necessary to pull new cable through existing conduits, which puts every conductor in the conduit at risk.

• Completely reusable components — Busways can be completely disassembled, relocated, and reassembled to any location. Spare components can be ordered and kept in inventory for fast changes. Components are fully tested and very reliable. All parts for busways of the same amperage are interchangeable and can be used on any bus in the datacenter. Repairs or changes can be quickly effected by simply replacing components.

• Simple design — A single system incorporates multiple copper conductors for single- and three-phase power in an insulated housing that allows the user to plug in outlet boxes, drop cords, and circuit breakers at any point along its length.

• Reduced human error — Circuit protection is maintained at the point of use rather than at a remote panel that is often far away, making the power system easier to troubleshoot and repair. Reducing the possibility of compromising the problem with human error when troubleshooting. In traditional systems, breaker in panels are often mislabeled or not updated to reflect changes, which makes them extremely difficult to troubleshoot.

• More usable space — With datacenter floor space at a premium, every square foot is critical. The busway reduces the number of breaker panels installed on walls and/or in power distribution units (PDUs) installed on the datacenter floor. This results in more usable space for IT equipment and server racks.

• Completely scalable — Datacenter electrical designs are often outdated before they are ever installed. The busway system is completely scalable, enabling components to be added as need rather than completely installed in the beginning. This provides the flexibility to make changes from day one without rewiring the datacenter.

Monitoring the busway

It is important for Sun to have the ability to monitor and know the exact power usage of the datacenter. Starline Track Busway provides monitoring units to measure and display each phase current in real time, perform alarm functions, and provide remote communication for main power busways. With this information, in addition to metered rack power strips, datacenter managers can intelligently forecast and plan for the future. They know the exact capacity and load of each rack, pod, and datacenter, and therefore know where they can install new or upgraded equipment. In addition, monitoring helps ensure the electrical system is balanced across phases, leading to better energy efficiency and ultimately costs savings.

Scalable electrical yards

Sun’s modular datacenter design makes it easier to design scalable utility yards as well. Sun Global Labs and Datacenter Design Services designed a scalable electrical yard that is easily expandable as well.

Flexible, adaptable power solutions

• Completely reusable components — Busways can be completely disassembled, relocated, and reassembled to any location. Spare components can be ordered and kept in inventory for fast changes. Components are fully tested and very reliable. All parts for busways of the same amperage are interchangeable and can be used on any bus in the datacenter. Repairs or changes can be quickly effected by simply replacing components.

• Simple design — A single system incorporates multiple copper conductors for single- and three-phase power in an insulated housing that allows the user to plug in outlet boxes, drop cords, and circuit breakers at any point along its length.

• Reduced human error — Circuit protection is maintained at the point of use rather than at a remote panel that is often far away, making the power system easier to troubleshoot and repair. Reducing the possibility of compromising the problem with human error when troubleshooting. In traditional systems, breaker in panels are often mislabeled or not updated to reflect changes, which makes them extremely difficult to troubleshoot.

• More usable space — With datacenter floor space at a premium, every square foot is critical. The busway reduces the number of breaker panels installed on walls and/or in power distribution units (PDUs) installed on the datacenter floor. This results in more usable space for IT equipment and server racks.

• Completely scalable — Datacenter electrical designs are often outdated before they are ever installed. The busway system is completely scalable, enabling components to be added as need rather than completely installed in the beginning. This provides the flexibility to make changes from day one without rewiring the datacenter.
Consolidating and standardizing
datacenters

To reduce its costs and impact on the environ-
ment, Sun is consolidating real estate, and in
the process, datacenters. One of Sun’s biggest
and most expensive assets is its global tech-
ical infrastructure, which is the foundation for
the engineering, services, sales, and support
community at Sun. Sun’s labs and datacenters
are where the innovation happens, products are
developed, testing is conducted, and
customers are supported. It is critical that this
environment enable the Sun community to
continue to deliver the innovation that makes
Sun thrive. Until recently, however, each space
developed on its own, sometimes in converted
offices or conference rooms, without design
standards.

To eliminate inefficiency and reduce environ-
mental and economic costs, an internal team
was established and asked to develop datacenter
design standards. Sun’s philosophy for data-
centers and lab spaces is to design everything
to be as power efficient as possible while sim-
pifying inevitable changes. Simplifying the
system also helps reduce human error, which
can contribute for up to 90 percent of power
interrupts. Everything is designed around the
current and anticipated future requirements of
a datacenter rack. These requirements are then
applied to a “pod,” a self-contained group
of racks and/or benches that optimize power,
cooling, and cabling efficiencies. The pod acts
as a building block of the datacenter and helps
Sun standardize power, cooling, and cabling needs
for both the datacenter and the utility
yard supporting the datacenter.

Given the state of technology today, the current
design assumes a starting requirement of 4 kW
per rack, upgradable in 4 kW chunks to as high
as 30 kW per rack. With these specifications in
mind, Sun designed a flexible, adaptable, and
scalable electrical system — with their partners
Universal Electric and APC — that is now an
accepted standard for Sun’s datacenter design.

Flexible, adaptable power solutions
in the datacenter

Starline Track Busway

After extensive investigation and analysis of
industry solutions, Sun selected Universal
Electric’s Starline Track Busway as the best fit
to replace the traditional hardwired electrical
system. Sun uses a combination of 250- and
400-amp busways to distribute power from the
main electrical rooms to the server racks. The
busway system design allows for simple instal-
lation, change, and removal of power outlets.
IT staff or facilities personnel can add and
remove plug-in outlets and electrical equipment
at any point along the busway without shutting
down the main busway system. This means
any location in the datacenter can have the
power supply reconfigured without affecting
anything else in the space — and without
risking an unplanned outage.

Starline Track Busway is the simple, versatile,
faster, and economical solution for supplying
power to electrical loads. The busway can be
tapped at any location with a variety of plug-in
units, eliminating panel boards, long runs of
conduit and wire, and expensive installation
costs for dedicated power outlets. It also dramat-
ically decreases human error. With dedicated
breaker switches located at the rack, trouble-
shooting outlets or reconfiguring supplies is
very easy.

In the Sun datacenter design, two busways are
required per pod. Only five conductors per
busway run through each conduit back to the
panel, rather than three to four wires per outlet.
This reduces the amount of copper by up to 15
percent and dramatically cuts installation
times. With copper becoming increasingly
expensive and in demand from developing
countries, the savings in the future could be
substantial.

The busways are powered by large distribution
boards located in external electrical rooms
outside the space. The distribution panels can
support multiple busways and reduce the amount
of distribution panels located on walls and
datacenter spaces.

Benefits of Starline Track Busway

With Starline Track Busway, Sun now has the
ability to quickly adapt to changing power
requirements in datacenters and labs. The
benefits of the system are evident the first time
something changes. For example, the day one
requirements for Sun’s Santa Clara, California,
datacenter were different from the original
plan. These changes forced electrical outlet
locations and types to be reconfigured, which
in a traditional datacenter would have incurred
more time and cost or result in IT equipment
layouts that were less than ideal. However,
with the Starline Track Busway system, Sun
was able to quickly and easily adapt to the
changes in layout — without any substantial
time or cost to the project. And, if the day one
requirements are less then initially anticipated,
buway components can be easily relocated to
another location in the datacenter or to another
datacenter rather than abandoning them in
place. The ability to right-size from the begin-
ning provides flexibility and economy that is
unheard of in today’s datacenters.

Other benefits include:
• Easy, fast, and inexpensive to change —
With the Starline Track Busway system,
there is no need schedule datacenter power
outages to reconfigure outlets, work on live
panels, or shut down panels to add, move,
or change outlets. With traditional wire-mold
deployments, it is often necessary to pull
new cable through existing conduits, which
puts every conductor in the conduit at risk.
• Completely reusable components — Busways
can be completely disassembled, relocated,
and reassembled to any location. Spare com-
ponents can be ordered and kept in inventory
for fast changes. Components are fully tested
and very reliable. All parts for busways of the
same amperage are interchangeable and can
be used on any bus in the datacenter. Repairs
or changes can be quickly effected by simply
replacing components.
• Simple design — A single system incorporates
multiple copper conductors for single- and
three-phase power in an insulated housing
that allows the user to plug in outlet boxes,
drop cords, and circuit breaker at any point
along its length.
• Reduced human error — Circuit protection is
maintained at the point of use rather than at
a remote panel that is often far away, making
the power system easier to troubleshoot
and repair and reducing the possibility of com-
pounding the problem with human error
when troubleshooting. In traditional systems,
breakers in panels are often mislabeled or
not updated to reflect changes, which makes
them extremely difficult to troubleshoot.
• More usable space — With datacenter floor
space at a premium, every square foot is
critical. The busway reduces the number of
breaker panels installed on walls and/or in
power distribution units (PDUs) installed on
the datacenter floor. This results in more
usable space for IT equipment and server
racks.

Benefits of Starline Track Busway

To monitor the busway

It is important for Sun to have the ability
to monitor and know the exact power usage of
the datacenter. Starline Track Busway provides
monitoring units to measure and display each
phase current in real time, perform alarm
functions, and provide remote communication
for main power busways. With this information,
in addition to metered rack power strips, data-
center managers can intelligently forecast and
plan for the future. They know the exact capacity
and load of each rack, pod, and datacenter,
and therefore know where they can install new
or upgraded equipment. In addition, monitoring
helps ensure the electrical system is balanced
across phases, leading to better energy effi-
ciency and ultimately costs savings.

Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Scalable electrical yards

Sun’s modular datacenter design makes it
easier to design scalable utility yards as well,
where the same principle of modularity is
applied to uninterruptible power supply units.
Modularity of the UPS helps to maintain energy efficiency — The Symmetra MW UPS is like a blade server in the sense that power capacity can be reduced or increased by adding or removing modules. The UPS frames at Sun’s Santa Clara facility are capable of growing in 200 kW increments up to 880 kW. This modularity allows Sun to operate the UPS at its most efficient power levels. By using this type of UPS, if demand grows faster in one building and slower in another, Sun can transfer power modules from one UPS to another. This allows Sun to have the flexibility of always right-sizing the UPS.

Fast modular repairs — Fast repairs are possible due to the modular design. Should a failure occur, the failed module is replaced. Fewer parts are required and many are fast to replace, making maintenance simple.

Redundancy for reliability — Important UPS subsystems are redundant with the UPS frame to enhance UPS availability. For example, if there is one more 200 kW module than is required to power the load, the UPS is redundant within the frame. In this scenario, all of the installed bays of power modules share the load. However, if any one bay of power modules fails, the remaining power modules continue to deliver UPS power to the loads. The operations management center is notified through alerts to schedule the failed module to be replaced. The result is more control over the availability of Sun’s operations.

Real-time monitoring — Many data points within the UPS and its subsystems are IP monitored. This helps ensure that operations staff are continuously aware of the operating parameters of the UPS either remotely or when standing beside the UPS control panel.

Best practices

Standardize on modularity of the systems — Modular design, from the rack to the utility yard, enables efficient scalability and predictability.

Use track busway for simplicity and flexibility — The ability to quickly change electrical components is critical to datacenter flexibility.

Closely monitor power usage — Newer systems have higher densities per rack footprint, requiring closer monitoring down to the rack level to enable predictive power system conditions.

Provide locations for future growth — Today, average datacenter rack loads are approaching 6 kW, but in a few years these loads are likely to increase to an average of almost 10 kW. As datacenter loads increase, it is imperative to have preplanned locations for future electrical equipment. When locations for future switch gear, transformers, distribution panels, and more are anticipated and planned for during the datacenter engineering and design phase, it is much easier to significantly grow capacity.

Plan for capacity growth — A good electrical design allows for capacity increases while reducing the impact to the datacenter. Planning the location of future equipment and electrical pathways in advance is essential, for example, installing the electrical conduits for future electrical infrastructure equipment. The cost of running additional conduits at the time of construction adds very little to the overall project costs, especially when compared to the cost of running the conduit through finished spaces later in time. Electricians must run conduit anyway, so running a few extra is fairly trivial. Planning ahead saves time, money, and datacenter disruption when it is necessary to expand.

Energy-efficient adaptability and scalability

Sun’s new modular pod design provides the foundation for implementing flexible, adaptable, scalable, and efficient electrical systems for the company’s datacenters and lab spaces. With the Starline Track Busway and Symmetra MW systems, Sun now has the ability to expand and grow the entire electrical system with minimal cost and impact to the datacenter. In addition, real-time power data enables Sun to grow datacenter capacity intelligently and as efficiently as possible, supporting the increasing needs of customers, without drawing more power from utilities or incurring additional cost.

Powering Sun’s Energy-Efficient Datacenters

Modular power distribution for today and tomorrow

Efficient Datacenters

Powering Sun’s Energy-Efficient Datacenters

Summary

Sun’s “pod” design enables modular and scalable electrical systems. Right-sizing from day one and into the future provides crucial flexibility and cost savings.

Simplifying the system reduces human error when expanding or reconfiguring the datacenter. Monitoring exact power usage in real time — from the utility feed down to the power strips internal to the racks — enables intelligent forecasting and planning.

Universal Electric’s Starline Track Busway installs faster than traditional electrical systems and uses power outlets that can be changed quickly to support evolving IT requirements.

Technology is changing at an amazing pace, creating more efficient and powerful computer systems in much smaller spaces. This space compression and compute performance expansion is requiring much higher power capacities per rack, forcing the need for a very flexible power distribution and delivery system within the datacenter.

Sun’s next-generation datacenter designs include flexible and adaptable electrical systems. This provides the ability to change power configurations in minutes and the capacity to easily accommodate future power demands — without disrupting datacenter operations.

Datacenters house a mixture of equipment with a wide variety of power needs. To comply with matters, IT equipment is changing with a much higher frequency than the typical equipment refreshes. The design also needs to be able to adapt to equipment relocation within the datacenter. These requirements drive the need for a flexible, adaptable electrical system with higher power and different power outlet configurations.

Unfortunately, traditional datacenter power implementations — with dedicated hardwired conductors for each power outlet through overhead or raised floors back to main distribution panels and circuit breakers — are neither flexible nor adaptable, and are expensive and time consuming to change. With traditional electrical systems, datacenter architects must preplan every outlet, even though it is nearly impossible to predetermine the power requirements for each rack in each location when the datacenter goes live, let alone for future requirements. When inevitable changes occur as a result of growth and/or equipment upgrades, the costs for electrical changes can be significant — both in terms of manpower and the risk of outages.